
For

Audit Report

June, 2024

QuillAudits

01www.quillaudits.com

FooDriver - Audit Report

….. 03Executive Summary

......…... 05Number of Security Issues per Severity

... 06Checked Vulnerabilities

... 07Techniques and Methods

.. 08Types of Severity

......….. 08Types of Issues

124. Missing gap variables could cause storage collisions when upgrades occur

113. Inaccurate token pricing in FooDriverToken could allow users get more tokens
 at less cost to them

125. Missing input validation for varying percentage splits on orders created

136. Low test coverage

091. Missing token transfer validation could make functionality break due to
 improperly handled transfers

102. Incorrect rate accounting would give users 100x more tokens than intended
 at mint

11Medium Severity Issues

13Low Severity Issues

09High Severity Issues

Table of Content

147. No duration for public and private sale could make registry arbitrarily start the
sale, mint all the tokens and end the sale

14Informational Issues

https://www.quillaudits.com/smart-contract-audit

02www.quillaudits.com

FooDriver - Audit Report

......…... 17Automated Tests

... 17General Recommendations

…..………………………………………………………………………………………………… 17Functional Tests Cases

.........…... 18Closing Summary

.................................…………….. 18Disclaimer

Table of Content

16

16

10. Events can be emitted out of order

11. Wrong comments

159. Code reuse

148. FooDriverToken can mint 0 tokens in endPublicSale and endPrivateSale

03www.quillaudits.com

FooDriver - Audit Report

Project Name FooDriver

Project URL https://foodriver.site/

Timeline 3rd June 2024 - 11th June 2024

Overview The FooDriver smart contract system is a suite of interconnected
contracts each serving distinct roles within the platform:

Each contract plays a vital role in the ecosystem, from managing
financial transactions to handling user roles and permissions.

The Foodriver Coin is a utility token designed to facilitate platform
operations and smart contract execution. It does not confer
ownership rights or profit-sharing, distinguishing it from a security
token. Its primary function is to ensure efficient use of the
platform’s features while adhering to regulatory guidelines.

• FooDriverToken
• FooDriverRegistry
• FooDriverFactory
• FooDriverStore
• FooDriverBank

Update Code Received 24th June 2024

Executive Summary

Second Review

Method

24th June 2024

Manual Review, Functional Testing, Automated Testing, etc.
All the raised flags were manually reviewed and re-tested to
identify any false positives.

Audit Scope The scope of this audit was to analyse the FooDriver codebase for
quality, security, and correctness.

Source Code https://github.com/mobile-foodriver-systems/smart-contract

https://www.quillaudits.com/smart-contract-audit
https://foodriver.site/
https://github.com/mobile-foodriver-systems/smart-contract

04www.quillaudits.com

FooDriver - Audit Report

Branch Main

Contracts Out of Scope

Fixed In

In-scope contract has been audited by QuillAudits. However, these
contracts inherit functionality from out-of-scope Smart contracts
that were not audited. Vulnerabilities in unaudited contracts could
impact in-scope Smart Contracts functionality. QuillAudits is not
responsible for such vulnerabilities.

Below are Out of Scope Contracts:

- OpenZeppelin contracts (Initializable.sol, …)

04640db72a406211b9213bb6acb469747a3b03ef

Contracts In-Scope

Commit Hash

- contracts/FooDriverBank.sol
- contracts/FooDriverStore.sol
- contracts/FooDriverFactory.sol
- contracts/FooDriverRegistry.sol
- contracts/FooDriverToken.sol
- contracs/TokenLock.sol

943cc21f8edfa45d7d63e739024141c3ae61fb49

Executive Summary

https://www.quillaudits.com/smart-contract-audit

05www.quillaudits.com

FooDriver - Audit Report

0

1

0

0

0

0

1

0

0

1

0

0

0Open Issues

Acknowledged Issues

Partially Resolved Issues

Resolved Issues

High Medium Low Informational

High

Low

Medium

Informational
Issues Found

11

Number of Security Issues per Severity

22 4

06www.quillaudits.com

FooDriver - Audit Report

Checked Vulnerabilities

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

DoS with Block Gas Limit

Transaction-Ordering Dependence

Use of tx.origin

Exception disorder

Gasless send

Balance equality

Byte array

ERC20 API violation

Compiler version not fixed

Redundant fallback function

Send instead of transfer

Style guide violation

Unchecked external call

Unchecked math

Unsafe type inference

Implicit visibility level

Transfer forwards all gas

https://www.quillaudits.com/smart-contract-audit

07www.quillaudits.com

FooDriver - Audit Report

Throughout the audit of smart contracts, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments match logic and expected behavior.
Token distribution and calculations are as per the intended behavior mentioned in the
whitepaper.
Implementation of ERC-20 token standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods, and tools were used to review all the smart contracts.

In this step, we have analyzed the design patterns and structure of smart contracts. A
thorough check was done to ensure the smart contract is structured in a way that will not
result in future problems.

Structural Analysis

A static Analysis of Smart Contracts was done to identify contract vulnerabilities. In this
step, a series of automated tools are used to test the security of smart contracts.

Static Analysis

Manual Analysis or review of code was done to identify new vulnerabilities or verify the
vulnerabilities found during the static analysis. Contracts were completely manually
analyzed, their logic was checked and compared with the one described in the
whitepaper. Besides, the results of the automated analysis were manually verified.

Code Review / Manual Analysis

In this step, we have checked the behavior of smart contracts in production. Checks were
done to know how much gas gets consumed and the possibilities of optimization of code
to reduce gas consumption.

Gas Consumption

Manual Review, Foundry, Slither.
Tools and Platforms used for Audit

Techniques and Methods

https://www.quillaudits.com/smart-contract-audit

08www.quillaudits.com

FooDriver - Audit Report

Every issue in this report has been assigned to a severity level. There are four severity
levels, each of which has been explained below.

Types of Severity

A high severity issue or vulnerability means your smart contract can be exploited. Issues
on this level are critical to the smart contract’s performance or functionality, and we
recommend these issues be fixed before moving to a live environment.

High Severity Issues

The issues marked as medium severity usually arise because of errors and deficiencies in
the smart contract code. Issues on this level could potentially bring problems, and they
should still be fixed.

Medium Severity Issues

Low-level severity issues can cause minor impacts and are just warnings that can remain
unfixed for now. It would be better to fix these issues at some point in the future.

Low Severity Issues

These are four severity issues that indicate an improvement request, a general question,
a cosmetic or documentation error, or a request for information. There is low-to-no
impact.

Informational

Types of Issues

Security vulnerabilities identified that must be resolved and are currently unresolved.
Open

These issues were identified in the initial audit and successfully fixed.
Resolved

Vulnerabilities which have been acknowledged but are yet to be resolved.
Acknowledged

Considerable efforts have been invested to reduce the risk/impact of the security issue,
but are not completely resolved.

Partially Resolved

https://www.quillaudits.com/smart-contract-audit

09www.quillaudits.com

FooDriver - Audit Report

1. Missing token transfer validation could make functionality break due to improperly
handled transfers

Path

Description

Function

FooDriverToken.sol, FooDriverBank.sol, FooDriverStore.sol

Tokens that comply with the ERC20 standard are expected to:

FooDriverBank also doesn’t have a check on the return values in releasePayment and
refundPayment, this would silently revert and leave tokens stuck or lost instead of being
transferred to the customer, store, courier or commission wallet.

After an ERC20 token transfer, it is expected that the 3 conditions above are satisfied. It is
recommended to validate the transfers with a check on the boolean value returned as some
tokens do not fully comply with this specification (commonly called weird-erc20-tokens). If
there is no validation on the return value of the transfer or transferFrom calls, the
remainder of the function could run to completion without the tokens being transferred.

The purchasePublic and purchasePrivate functions call transferFrom on the token address
passed and are vulnerable to this attack - if the function calls fail or revert for any reason
(such as insufficient token balances) tokens will still be minted. Users will be able to
effectively game the protocol by minting tokens in either of these sale periods without
paying out those tokens.

Some other issues could arise are with:

- Moves amount tokens from the caller’s account to recipient.
- Returns a boolean value indicating whether the operation succeeded.
- Emits a Transfer event.

Fee-on-transfer tokens where an incomplete amount of tokens is sent into the contract
with the same rate calculations as regular transfers would.
Tokens with irregular token decimals (less or greater than 18 decimals) being used in
the contracts would affect the token accounting as well because a user could pay for
the private or public sale with a less valuable token that has an inflated amount of
decimals making it appear to be worth more.

-

-

purchasePublic, purchasePrivate, releasePayment, refundPayment, withdrawERC20Token

High Severity Issues

https://www.quillaudits.com/smart-contract-audit

10www.quillaudits.com

FooDriver - Audit Report

Recommendation
Use the SafeERC20 token wrapper from OpenZeppelin to catch possible weird ERC20
transfer nuances.
Since the supportedTokens allowlist is used, tokens to be added should be properly
vetted before being used in the system.

-

-

Status
Resolved

2. Incorrect rate accounting would give users 100x more tokens than intended at mint

Path

Description

Function

FooDriverToken.sol

The rates for the private and public sale, privateSaleRate and publicSaleRate describe a 100
to 1 rate to support floating numbers. When these values get set in the updateTokenRates
function it allows the following require checks to pass
require(supportedTokens[token].privateSaleRate > 0, “Unsupported token or rate is 0”);
require(supportedTokens[token].publicSaleRate > 0, “Unsupported token or rate is 0”);

However it doesn’t make the payout calculations correct.

Provided this is a scenario where:
1% is intended to be represented as 100 to support floating point numbers, then an issue
would arise with representing 100% as 10,000 because payout would be 1,000e18 *
10000/100 = 100,000e18 tokens. This would give users 100x more tokens than were initially
intended on a single purchase thereby depleting the tokensale balance sooner than
expected and the cost of 1x.

and not the supportedToken to token price (assuming USDC is the supported token) i.e.
100 USDC = 1 FDT, 1 USDC = 0.01 FDT

updateTokenRates, purchasePrivate, purchasePublic

11www.quillaudits.com

FooDriver - Audit Report

3. Inaccurate token pricing in FooDriverToken could allow users get more tokens at less cost
to them

Path

Function

Description

Recommendation

FooDriverToken.sol

supportedTokens

The FooDriverToken contract allows users to purchase tokens in the private sale and the
public sale via supportedTokens added by the registry. The issue here lies with the rates
which are manually added - if there happens to be a change in the price of the tokens
supported via a depeg or improper rate adjustments before the user with
DEFAULT_ADMIN_ROLE gets to update it, tokens will be improperly priced until that update
occurs.

The team can consider using oracles to get prices and adjust the token sale rates
automatically.

Status
Acknowledged

Medium Severity Issues

Recommendation
-

-

Consider using a basis points system where divisions for percentages are done by 10,000
instead of 100.
Properly document the intention with rates beyond the comment provided.

Status
Resolved

12www.quillaudits.com

FooDriver - Audit Report

4. Missing gap variables could cause storage collisions when upgrades occur

Path

Description

Recommendation

FooDriverToken.sol, FooDriverFactory.sol, FooDriverRegistry.sol, FooDriverBank.sol

Writing Upgradeable Contracts - OpenZeppelin Docs

Upgradeable contracts allow for smart contracts to have extended functionality. They can
be deployed as is, and upgraded at a later time to adjust the implementation. Within
composable upgradeable contracts, the issue of storage collision exists which could alter
the reading of storage for each of the contracts built atop each other.

To avoid issues when reading or writing to storage it is advisable to have a gap introduced
in each contract to prevent the new storage variables added from crossing into existing
storage locations. Here, OpenZeppelin describes in detail how to manage smart contract
storage with gaps:

Include storage gaps at the end of state variable declarations in each of the contracts
affected.

Status
Resolved

5. Missing input validation for varying percentage splits on orders created

Path

Function

Description

FooDriverStore.sol

createOrder()

For orders created by the Store contract via the registry, there is no input validation for the
different percentages that are passed in as arguments. It is expected that these values
should not exceed 100% of the total amount but not enforced in the codebase. This would
make some functions to revert or continue to run till the end and fail to transfer the
expected token balances to the respective parties.

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#storage-gaps

13www.quillaudits.com

FooDriver - Audit Report

Recommendation
Ensure that the balance to be distributed falls within the expected ranges by ensuring all
token amounts do not overflow 100%. The invariant for tokensLocked should be greater or
equal to tokensReleased.

Status
Resolved

6. Low test coverage

Description

Recommendation
Include unit tests that have > 95% code coverage including all possible paths for code
execution.

Unit tests are used to ensure that the code functions as expected by passing in varying user
input and setting up various parameters to test the boundaries of the protocol. There are
no unit test cases associated with the codebase provided, hereby increasing the probability
of bugs being present and reducing quality assurance.

Status
Acknowledged

Low Severity Issues

14www.quillaudits.com

FooDriver - Audit Report

Informational Issues

7. No duration for public and private sale could make registry arbitrarily start the sale, mint
all the tokens and end the sale

Path
FooDriver.sol

Description

Recommendation

Status

The current implementation of the token sale does not have any timing schedules for users
to work with. Some of the issues with this are:

The public and private sale could happen concurrently, and this would cause some
concern because public sales usually happen after the private sale is ended or fully
subscribed to.
There is also no duration given for the tokens to be bought within, both sales could
happen in a single hour not allowing the community to fully participate.

purchasePublic could include a check for the private sale to have ended before the
public sale can begin.
Include a duration for the tokensale in the contract.

-

-

-

-

Resolved

8. FooDriverToken can mint 0 tokens in endPublicSale and endPrivateSale

Description
The ERC20 internal _mint function does not revert when 0 tokens are passed in as an
argument. A transfer event will also be emitted for the 0 token mints which would be
unnecessary, especially for on-chain monitoring software.

Path

Function

FooDriverToken.sol

endPublicSale, endPrivateSale

15www.quillaudits.com

FooDriver - Audit Report

Recommendation

Status
Resolved

endPublicSale and endPrivateSale could check that the amount left is greater than 0
before calling mint.
Include a duration for the tokensale in the contract.

-

-

9. Code reuse

Description
The ERC20 internal _mint function does not revert when 0 tokens are passed in as an
argument. A transfer event will also be emitted for the 0 token mints which would be
unnecessary, especially for on-chain monitoring software.

Recommendation
FooDriverHelper.sol could be created to hold all repeated code blocks, shorten the lines of
code and possibly reduce deployment cost generally.

Status
Acknowledged

16www.quillaudits.com

FooDriver - Audit Report

11. Wrong comments

Description

Recommendation

Path

To avoid issues with future integrations, properly label comments.

FooDriverRegistry.sol

The comment * @notice Retrieves the address of a store by its ID. does not describe
accurately what the function returns. The return value is a specific interface for the
FooDriverStore, not an address as the comment says.

Status
Resolved

10. Events can be emitted out of order

Path
FooDriverToken.sol, FooDriverBank.sol, FooDriverFactory.sol

Description

Recommendation

Status

The Check-Effects-Interact [CEI] pattern helps to greatly reduce the risk of reentrancy in
contracts, it is a best practice to emit events as part of the Effects before any external calls
or interactions happen which could open up a reentrancy vulnerability.

Emit events before external calls or prior to updating the state of the contract.

Resolved

17www.quillaudits.com

FooDriver - Audit Report

Automated Tests
No major issues were found. Some false positive errors were reported by the tools. All the other
issues have been categorized above according to their level of severity.

General Requirements
- Lock the solidity pragma version before deployment
- Variables only set once (tokenSupply, tokenForPresale) can be made constant or immutable

Functional Tests Cases

Owner can withdraw tokens

Owner can end presale to allow users begin claims

Create order and lock funds

Release and Refund cases check

Able to change courier address

All users can withdraw presale tokens

18www.quillaudits.com

FooDriver - Audit Report

Closing Summary
In this report, we have considered the security of the FooDriver codebase. We performed our
audit according to the procedure described above.

Some issues of High, Medium, Low and informational severity were found, Some suggestions and
best practices are also provided in order to improve the code quality and security posture.

Disclaimer
QuillAudits Smart contract security audit provides services to help identify and mitigate potential
security risks in FooDriver smart contract. However, it is important to understand that no security
audit can guarantee complete protection against all possible security threats. QuillAudits audit
reports are based on the information provided to us at the time of the audit, and we cannot
guarantee the accuracy or completeness of this information. Additionally, the security landscape
is constantly evolving, and new security threats may emerge after the audit has been completed.

Therefore, it is recommended that multiple audits and bug bounty programs be conducted to
ensure the ongoing security of FooDriver smart contract. One audit is not enough to guarantee
complete protection against all possible security threats. It is important to implement proper risk
management strategies and stay vigilant in monitoring your smart contracts for potential security
risks.

QuillAudits cannot be held liable for any security breaches or losses that may occur subsequent
to and despite using our audit services. It is the responsibility of the FooDriver to implement the
recommendations provided in our audit reports and to take appropriate steps to mitigate
potential security risks.

https://www.quillaudits.com/smart-contract-audit

www.quillaudits.com

FooDriver - Audit Report

Follow Our Journey

1M+
Lines of Code Audited

$30B
Secured

1000+
Audits Completed

About QuillAudits
QuillAudits is a secure smart contracts audit platform designed by QuillHash Technologies. We
are a team of dedicated blockchain security experts and smart contract auditors determined to
ensure that Smart Contract-based Web3 projects can avail the latest and best security solutions

to operate in a trustworthy and risk-free ecosystem.

https://www.quillaudits.com/smart-contract-audit
https://twitter.com/quillaudits
https://www.linkedin.com/company/quillaudits/
https://t.me/QuillAudits
https://www.reddit.com/r/QuillAudits/
https://quillaudits.medium.com/
https://discord.gg/C6M2eQZagw
https://www.youtube.com/channel/UC5Yt_8qEaAr-PiTMmGBuPCQ/videos

QuillAudits

Canada, India, Singapore, UAE, UK

www.quillaudits.com

audits@quillhash.com

For

Audit Report

June, 2024

https://www.quillaudits.com/smart-contract-audit
mailto:audits@quillhash.com

